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Noise-aided control of chaotic dynamics in a logistic map

J. Escalona and P. Parmananda
Facultad de Ciencias, UAEM, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, Mexico

~Received 13 September 1999!

Controlling chaos involves employing small perturbations to a control parameter, resulting in the stabiliza-
tion of the system~naturally chaotic! on one of the infinite unstable periodic orbits embedded in the chaotic
attractor. In this Brief Report we study the constructive role of external noise in increasing the efficiency of
controlling chaos. Using a logistic map as an example, control of chaotic dynamics is achieved using a linear
delayed-feedback strategy. Working in the subthreshold regime of control~where the value of control constant
is less than the minimum value required to stabilize the period-1 target state!, system dynamics in the presence
of superimposed noise~system plus control plus noise! exhibit a resonance effect. Furthermore it is observed
that the time required to reach the target state decreases appreciably in the presence of an optimum level of
noise.

PACS number~s!: 05.45.2a, 87.10.1e
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I. INTRODUCTION

The idea of controlling chaos using a feedback techni
was introduced by Ott, Grebogi, and Yorke~OGY! @1#. In
this control strategy, small perturbations are applied to a c
trol parameter while monitoring the system in a state sp
of dynamical variables. When the trajectory crosses a P
carésection of the chaotic attractor, the size of the pertur
tion is calculated according to a control formula@1#, and an
appropriate correction is superimposed on an accessible
trol parameter for the next cycle. Since there is always
error in targeting the fixed point on the section~correspond-
ing to the desired periodic behavior!, the procedure is re
peated every cycle. As a result of these perturbations,
system is stabilized on one of the unstable periodic or
embedded in the chaotic attractor. The OGY algorithm a
its subsequent modifications@2–4# have been used to contro
chaotic dynamics in various experimental systems@5–10#.

Another idea that has attracted immense interest la
emanates from the pioneering work of Benziet al. @11#.
Since their landmark paper it has been realized that detec
of weak signals in nonlinear systems can indeed be impro
by increasing the noise level, reaching a maximum signa
noise ratio for an optimum level of noise subsequent
which the signal is masked by noise. This phenomena kno
as stochastic resonance has been detected and analyze
number of physical@12#, chemical@13#, and biological@14#
systems. Moreover it has also been reported that in cer
situations superimposed noise can indeed play a constru
role if manipulated judiciously@15#.

In this Brief Report the following question is asked: C
external noise if implemented appropriately play a constr
tive role in the control of chaotic dynamics ? If yes, we se
to verify the existence of the resonance effect reported
various numerical and experimental situations@16,17,12–
14#. The paper is organized as follows: In Sec. II we disc
the implementation of delayed-feedback control on the log
tic map in the subthreshold regime. In Sec. III, we pres
numerical results describing the constructive role of noise
the control of chaos and the associated resonance phe
ena. Finally, we present a brief discussion regarding the p
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sible relevance of our numerical results to experimental s
ations.

II. SUBTHRESHOLD CONTROL
OF CHAOTIC DYNAMICS

Our model system is a logistic map of the following form

Xn115aXn~12Xn!. ~1!

This discrete system undergoes a standard period-doub
route as the bifurcation parameter~a! is varied and exhibits
chaotic dynamics fora53.7. In order to stabilize the
period-1 orbit~the fixed point of the map! embedded in the
chaotic attractor, one can superimpose a linear delay
feedback term onto the evolution equation of the map. T
controlled system assumes the following form under the
fluence of superimposed feedback:

Xn115aXn~12Xn!1g~Xn2Xn21!. ~2!

Figure 1~a! shows the influence of the linear delaye
feedback control for the control constantg50.37. The sys-
tem dynamics converge on the period-1 orbit~fixed point of
the map! upon implementation of the control. Subsequent
attainment of target state, the feedback term~control signal!
vanishes asXn5Xn21. However, as the value of the contro
constantg is decreased, a certain critical~minimum! value of
gc50.35 is found such that forg,gc control fails to stabi-
lize the fixed point of the map. We defineg,gc as the
subthreshold region of control where, although suppress
of chaotic dynamics is achieved, stabilization of the tar
period-1 orbit is unattainable. The evolution of the logis
map in the subthreshold control (g50.32) regime is shown
in Fig. 1~b!.

III. NOISE-AIDED CONTROL OF CHAOTIC DYNAMICS

Once the system is placed in the region of subthresh
control, external noise is added on the dynamics in the fo

Xn115aXn~12Xn!1g~Xn2Xn21!1bPn , ~3!
5987 ©2000 The American Physical Society
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where Pn is a random variable~Gaussian and/or Poisson!
with zero mean and standard deviations, andb is the am-
plitude of the variability~noise strength! superimposed on
the logistic map. Augmentingb in small intervals, the re-
sponse of the model system~with control! as a function of
amplitude (b) of the additive noise is studied. In order
quantify the system dynamics in the presence of exte
noise a dispersion function~D! is defined, where

D5

(
n5ni

nf

uXn2Xf u2

nf2ni
~4!

measures the deviation of the controlled dynamics from
fixed pointXf of the map~target period-1 orbit!.

Figure 2~a! shows the dependence of dispersion funct
~D! on the noise strengthb. It exhibits a resonance behavio
manifested by the presence of a distinct minima in the d
persion curve. This minima corresponds to an optimum le
of noise for which the convergence of the system dynam
to the target period-1 orbit is maximum. This resonance p

FIG. 1. ~a! Control of chaotic dynamics for the logistic ma
using a linear delayed-feedback strategy. The value of the co
constant used (g.gc) is g50.37. ~b! Evolution of the map~with
control! for g,gc(g50.32). Although suppression of complexit
is attained, the target period-1 orbit is elusive. This is the region
subthreshold control where external noise is superimposed.
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nomenon is qualitatively independent to the choice of s
used for generating the random variable. Moreover
minima in the dispersion curve persists for a string of ra
dom variables with a Poisson distribution~with zero mean!,
as shown in Fig. 2~b!.

Another significant effect of noise on the controlled d
namics seems to be the increased speed at which the t
state could be attained. Figure 3 shows the controlled logi
map without noise, and for the second curve noise is su
imposed until the fixed point is attained~iteration number
1200!, and subsequently turned off. The rate at which sta
lization is achieved on the period-1 orbit is clearly faster
the presence of an optimal level of noise. However, we w
not able to find any resonance effect~time to attain control vs
b) for this aspect of the control. To reiterate, for the result
Fig. 3, noise is turned off subsequent to arriving at the fix
point Xf . It was realized that the convergence time decrea

ol

f

FIG. 2. ~a! The dispersion curve~D! obtained as a function o
the noise strength (b). The external noise used has a Gauss
distribution with a zero mean. The underlying resonance phen
ena is manifested by the minima of the curve corresponding to
optimum noise level. The control constant (g) in the subthreshold
regime is fixed atg50.32.~b! The dispersion curve~D! obtained as
a function of the noise strength (b). The external noise used has
Poisson distribution with zero mean. The underlying resonance p
nomena is manifested by the minima of the curve correspondin
the optimum noise level. The control constant (g) in the subthresh-
old regime is fixed atg50.32.
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as the level of noise was slowly increased, attaining
minima subsequent to the smooth convergence of the
namics to the target state was hampered by increased lev

FIG. 3. The enhanced speed of control in the presence o
optimum level of noise (b54.331024). The target period-1 orbit
is attained 500 iteration units earlier in the presence of exte
noise. The control constant (g) in the regime (g.gc) is fixed at
g50.351.
t,

ce

re
a
y-
l of

noise. This faster convergence is a manifestation of the
struction of transients in the presence of noise. Therefor
is valid ~hence useful! for the values of control parameter
where the controlled dynamics exhibit slowly decaying tra
sient oscillations before converging on to the target perio
state.

IV. DISCUSSION

The numerical results indicate that superimposed no
can indeed play a constructive role in controlling chao
dynamics. It is reasonable to envisage an experimental s
ation where the superimposed feedback constant (g) could
not be incremented indefinitely. In such scenarios it could
desirable to attempt stabilization of the target state by su
imposing external noise. Another possible application
noise aided control could involve the increased speed of
bilization observed in the presence of external noise. In c
tain situations, if the stabilization of target states is delay
by virtue of long transients, we suggest using external no
for a quicker targeting of desired dynamics.
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