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Noise-aided control of chaotic dynamics in a logistic map
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Controlling chaos involves employing small perturbations to a control parameter, resulting in the stabiliza-
tion of the system{naturally chaotit on one of the infinite unstable periodic orbits embedded in the chaotic
attractor. In this Brief Report we study the constructive role of external noise in increasing the efficiency of
controlling chaos. Using a logistic map as an example, control of chaotic dynamics is achieved using a linear
delayed-feedback strategy. Working in the subthreshold regime of céwtneke the value of control constant
is less than the minimum value required to stabilize the period-1 targef, spséem dynamics in the presence
of superimposed nois@ystem plus control plus noisexhibit a resonance effect. Furthermore it is observed
that the time required to reach the target state decreases appreciably in the presence of an optimum level of
noise.

PACS numbd(s): 05.45—-a, 87.10+e

I. INTRODUCTION sible relevance of our numerical results to experimental situ-
ations.
The idea of controlling chaos using a feedback technique
was introduced by Ott, Grebogi, and York®GY) [1]. In Il. SUBTHRESHOLD CONTROL
this control strategy, small perturbations are applied to a con- OF CHAOTIC DYNAMICS

trol parameter while monitoring the system in a state space
of dynamical variables. When the trajectory crosses a Poin-
caresection of the chaotic attractor, the size of the perturba-
tion is calculated according to a control form{ld, and an

appropriate correction is superimposed on an accessible Cofpis giscrete system undergoes a standard period-doubling
trol parameter for the next cycle. Since there is always afq e as the bifurcation paramet@) is varied and exhibits
error in targeting the fixed point on the secti@orrespond-  opaqtic dynamics fora=3.7. In order to stabilize the
ing to the desired periodic behavjpithe procedure is re- period-1 orbit(the fixed point of the mapembedded in the

peated every cycle. As a result of these perturbations, they,qic attractor, one can superimpose a linear delayed-
system is stabilized on one of the unstable periodic Orblj:

i . . eedback term onto the evolution equation of the map. The
embedded in the chaotic attractor. The OGY algorithm and,onqjled system assumes the following form under the in-
its subsequent modificatiof2—4| have been used to control fluence of superimposed feedback:
chaotic dynamics in various experimental syst¢gs10].

Another idea that has attracted immense interest lately X 1=aXn(1—= X))+ y(Xy—Xp_1). )
emanates from the pioneering work of Beretial. [11].
Since their landmark paper it has been realized that detectiorigure ¥a) shows the influence of the linear delayed-
of weak signals in nonlinear systems can indeed be improvegéedback control for the control constapt0.37. The sys-
by increasing the noise level, reaching a maximum signal t@em dynamics converge on the period-1 offiited point of
noise ratio for an optimum level of noise subsequent tathe map upon implementation of the control. Subsequent to
which the signal is masked by noise. This phenomena knowgttainment of target state, the feedback técontrol signal
as stochastic resonance has been detected and analyzed ijapishes a¥,=X,_;. However, as the value of the control
number of physical12], chemical[13], and biological[14]  constanty is decreased, a certain critigahinimum) value of
systems. Moreover it has also been reported that in certaif) = 0.35 is found such that fop< . control fails to stabi-
situations superimposed noise can indeed play a constructiyge the fixed point of the map. We defing<1y, as the
role if manipulated judiciously15]. o subthreshold region of control where, although suppression

In this Brief Report the following question is asked: Can of chaotic dynamics is achieved, stabilization of the target
external noise if implemented appropriately play a construcperiod-1 orbit is unattainable. The evolution of the logistic

tive role in the control of chaotic dynamiCS ?If yes, we Seekrnap in the subthreshold Controi/é 032) regime is shown
to verify the existence of the resonance effect reported fofy Fig. 1(p).

various numerical and experimental situatidri$,17,12—
14]..The paper is organized as follows: In Sec. Il we dlscu.ssm. NOISE-AIDED CONTROL OF CHAOTIC DYNAMICS
the implementation of delayed-feedback control on the logis-
tic map in the subthreshold regime. In Sec. lll, we present Once the system is placed in the region of subthreshold
numerical results describing the constructive role of noise ircontrol, external noise is added on the dynamics in the form
the control of chaos and the associated resonance phenom-

ena. Finally, we present a brief discussion regarding the pos- Xns1=aXp(1=X,) + v(X,—X,-1) + B8Py, (©)]

Our model system is a logistic map of the following form:

Xn+1=aXp(1=Xy). (1)
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FIG. 1. (8 Control of chaotic dynamics for the logistic map FIG. 2. (a) The dispersion curv€D) obtained as a function of
using a linear delayed-feedback strategy. The value of the contrdP® hoise strength/). The external noise used has a Gaussian
constant usedy> y,) is y=0.37.(b) Evolution of the map(with distribution with a zero mean. The underlying resonance phenom-
contro) for y<y.(y=0.32). Although suppression of complexity ©€na is manifested by the minima of the curve corresponding to the
is attained, the target period-1 orbit is elusive. This is the region oPPtimum noise level. The control constant)(in the subthreshold

subthreshold control where external noise is superimposed. regime is fixed aty=0.32.(b) The dispersion curvéD) obtained as
a function of the noise strengttB]. The external noise used has a

Poisson distribution with zero mean. The underlying resonance phe-
nomena is manifested by the minima of the curve corresponding to
the optimum noise level. The control constam) (n the subthresh-

old regime is fixed aty=0.32.

where P, is a random variabléGaussian and/or Poisspn
with zero mean and standard deviatienand 8 is the am-
plitude of the variability(noise strengthsuperimposed on
the logistic map. Augmentingg in small intervals, the re-
sponse of the model systetwith contro) as a function of
amplitude (3) of the additive noise is studied. In order to
qguantify the system dynamics in the presence of extern
noise a dispersion functiofD) is defined, where

nomenon is qualitatively independent to the choice of seed
atllsed for generating the random variable. Moreover the
minima in the dispersion curve persists for a string of ran-
dom variables with a Poisson distributiéwith zero mean
ng as shown in Fig. @).
2 | X — X2 Another significant effect of noise on the controlled dy-
_n=n; namics seems to be the increased speed at which the target
b= n¢—n; ) state could be attained. Figure 3 shows the controlled logistic
map without noise, and for the second curve noise is super-
measures the deviation of the controlled dynamics from thémposed until the fixed point is attaing@eration number
fixed pointX; of the map(target period-1 orbjt 1200, and subsequently turned off. The rate at which stabi-
Figure Z2a) shows the dependence of dispersion functionlization is achieved on the period-1 orbit is clearly faster in
(D) on the noise strengt. It exhibits a resonance behavior the presence of an optimal level of noise. However, we were
manifested by the presence of a distinct minima in the disnot able to find any resonance effétitne to attain control vs
persion curve. This minima corresponds to an optimum levef3) for this aspect of the control. To reiterate, for the result of
of noise for which the convergence of the system dynamic&ig. 3, noise is turned off subsequent to arriving at the fixed
to the target period-1 orbit is maximum. This resonance phepoint X; . It was realized that the convergence time decreases
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- ' ' ' ‘ ' ' noise. This faster convergence is a manifestation of the de-
075 | ¥ * without noise 1 struction of transients in the presence of noise. Therefore, it
Lo " it noise | is valid (hence usefulfor the values of control parameters
04 L o ’ i where the controlled dynamics exhibit slowly decaying tran-
Lo u, sient oscillations before converging on to the target period-1
L e | state.
X 0.73 | s L .
et 4 IV. DISCUSSION
o . "7 1 The numerical results indicate that superimposed noise
i * ] can indeed play a constructive role in controlling chaotic
071 F, - dynamics. It is reasonable to envisage an experimental situ-
- _ ation where the superimposed feedback constahtcpould
- . . . ‘ . . . not be incremented indefinitely. In such scenarios it could be
"1000 1250 1500 1750 2000 desirable to attempt stabilization of the target state by super-

Iteration number imposing external noise. Another possible application for
FIG. 3. The enhanced speed of control in the presence of afoise _alded control _could involve the increased sp_eed of sta-
optimum level of noise §=4.3x 10~%). The target period-1 orbit b||_|zat.|on Qbser\_/ed in the presence of external noise. In cer-
is attained 500 iteration units earlier in the presence of externaidin situations, if the stabilization of target states is delayed

noise. The control constanty) in the regime ¢>y,) is fixed at DY virtue of long transients, we suggest using external noise
y=0.351. for a quicker targeting of desired dynamics.
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